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Abstract
We present 7 new tunes of thep⊥-ordered shower and underlying-event model in PYTHIA 6.4.

These “Perugia” tunes update and supersede the older “S0” family. The new tunes include the
updated LEP fragmentation and flavour parameters reported on by H. Hoeth at this workshop [1].
The hadron-collider specific parameters were then retuned (manually) using Tevatron min-bias data
from 630, 1800, and 1960 GeV, Tevatron Drell-Yan data at 1800and 1960 GeV, as well as SPS
min-bias data at 200, 540, and 900 GeV. In addition to the central parameter set, related tunes ex-
ploring systematically soft, hard, parton density, and color structure variations are included. Based
on these variations, a best-guess prediction of the chargedtrack multiplicity in inelastic, nondiffrac-
tive minimum-bias events at the LHC is made.

1 Introduction

Perturbative calculations of collider observables rely ontwo important prerequisites: factorisation and
infrared safety. These are the tools that permit us to relatethe calculations to detector-level measured
quantities, up to corrections of known dimensionality, which can then be suppressed (or enhanced) by
appropriate choices of the dimensionful scales appearing in the poblem. However, this approach does
limit us to consider only a predefined class of observables, at a limited precision set by the aforemen-
tioned scales. In the context of the underlying event, say, we are faced with the fact that we do not
(yet) have factorisation theorems for this component, while at the same time acknowledging that not all
collider measurements can be made insensitive to it at a level comparable to the achievable experimental
precision. And when considering observables such as track multiplicities, hadronisation corrections,
or even short-distance resonance masses if the precision required is very high, we are confronted with
quantities which may be experimentally well measured but which are explicitly sensitive to infrared
physics.

Let us begin with factorisation. When applicable, factorisation allows us to subdivide the calcula-
tion of an observable (regardless of whether it is infrared safe or not) into a perturbatively calculable
short-distance part and a universal long-distance part, the latter of which may be modeled and con-
strained by fits to data. However, in the context of hadron collisions the conceptual separation into
“hard-scattering” and “underlying-event” components is not necessarily equivalent to a clean separation
in terms of “hardness” (or perhaps more properly formation time), since what is labeled the “underly-
ing event” may contain short-distance physics of its own. Indeed, from ISR energies [2] through the
SPS [3, 4] to the Tevatron [5–9], and even in photoproductionat HERA [10], we see evidence of (per-
turbative) “minijets” in the underlying event, beyond whatbremsstrahlung alone appears to be able to
account for. It would therefore seem apparent that a universal modeling of the underlying event must in-
clude at least some degree of correlation between the hard-scattering and underlying-event components.
It is in this spirit that the concept of “interleaved evolution” [11] was developed as the cornerstone of
thep⊥-ordered models [11,12] in both PYTHIA 6 [13] and, more recently, PYTHIA 8 [14].
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The second tool, infrared safety, provides us with a class ofobservables which are insensitive to the
details of the long-distance physics. This works up to corrections of order the long-distance scale divided
by the short-distance scale,Q2

IR/Q2
UV, whereQUV denotes a generic hard scale in the problem and

QIR ∼ ΛQCD ∼ O(1 GeV). SinceQIR/QUV → 0 for largeQUV, such observables “decouple” from
the infrared physics as long as all relevant scales are≫ QIR. Only if we require a precision that begins
to approachQIR should we begin to worry about non-perturbative effects forsuch observables. Infrared
sensitive quantities, on the other hand, contain logarithms logn(Q2

UV/Q2
IR) which grow increasingly

large asQIR/QUV → 0. As an example, consider particle or track multiplicities;in the absence of
nontrivial infrared effects, the number of partons that would be mapped to hadrons in a naı̈ve local-
parton-hadron-duality [15] picture depends logarithmically on the infrared cutoff.

Min-bias/UE physics can therefore be perceived of as offering an ideal lab for studying nonfactorized
and nonperturbative phenomena with the highest possible statistics, giving crucial tests of our ability to
model and understand these ubiquitous components. As a beneficial side effect, the improved models
and tunes that result from this effort are important ingredients in the modeling of high-p⊥ physics, in
the context of which the underlying event and nonperturbative effects furnish a nontrivial “haze” into
which the high-p⊥ physics is embedded.

As part of the effort to spur more interplay between theorists and experimentalists in this field, we
here report on a new set of tunes of thep⊥-ordered PYTHIA framework, which update and supersede the
older “S0” family of tunes. The new tunes have been made available via the routine PYTUNE starting
from PYTHIA version 6.4.20.

We have here focused in particular on the energy scaling fromlower energies towards the LHC
and on attempting to provide at least some form of systematicuncertainty estimates, in the form of a
small number of alternate parameter sets that represent systematic variations in some of the main tune
parameters

We also present a few distributions that carry interesting and complementary information about the
underlying physics, updating and complementing those contained in [16]. For brevity, this text only
includes a representative selection, with more results available on the web [17].

The main point is that, while each plot represents a complicated cocktail of physics effects, such that
any sufficiently general model presumably could be tuned to give an acceptable description observable
by observable, it is very difficult to simultaneously describe the entire set. The real game is therefore not
to study one distribution in detail, but to study the degree of simultaneous agreement or disagreement
over many, mutually complementary, distributions.

We have tuned the Monte Carlo in four consecutive steps:

1. Final-State Radiation (FSR) and Hadronisation (HAD): using LEP data, tuned by Professor [1,18].

2. Initial-State Radiation (ISR) and PrimordialkT : using the Drell-Yanp⊥ spectrum at 1800 and
1960 GeV, as measured by CDF [19] and DØ [20], respectively. We treat the data as fully cor-
rected for photon bremsstrahlung effects in this case, i.e., we compare the measured points to the
Monte Carlo distribution of the originalZ boson. We believe this to be reasonably close to the
definition used for the data points in both the CDF and DØ studies.

3. Underlying Event (UE) and Beam Remnants (BR): usingNch [21], dNch/dp⊥ [22], and〈p⊥〉 (Nch)
[23] in min-bias events at 1800 and 1960 GeV, as measured by CDF. Note that theNch spectrum
extending down to zerop⊥ measured by the E735 Collaboration at 1800 GeV [24] was left out of
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the tuning, since we were not able to consolidate this measurement with the rest of the data. We
do not know whether this is due to intrinsic limitations in the modeling or to a misinterpretation
on our part of the measured result.

4. Energy Scaling: usingNch in min-bias events at 200, 540, and 900 GeV, as measured by UA5[25,
26], and at 630 and 1800 GeV, as measured by CDF [21]. Note thatwe include neither elastic nor
diffractive Monte Carlo events in any of our comparisons, which could affect the validity of the
modeling for the first few bins in multiplicity. We thereforeassigned less importance to these bins
when doing the tunes. The last two steps were iterated a few times.

Note that the clean separation between the first and second points assumes jet universality, i.e., that aZ0,
for instance, fragments in the same way at a hadron collider as it did at LEP. This is not an unreasonable
first assumption, but it is still important to check it explicitly, e.g., by measuring strange to unstrange
particle production ratios, vector to pseudoscalar meson ratios, and/or baryon to meson ratiosin situ at
hadron colliders.

Note also that we do not include any explicit “underlying-event” observables here. Instead, we rely
on the large-multiplicity tail of minimum-bias events to mimic the underlying event. A similar proce-
dure was followed for the older “S0” tune [27, 28], which turned out to give a very good simultaneous
description of both minimum-bias and underlying-event physics at the Tevatron, despite only having
been tuned on minimum-bias data there1. Conversely, Rick Field’s “Tune A” [29–32] was originally
only tuned on underlying-event data, but turned out to give avery good simultaneous description of
minimum-bias physics. We perceive of this as good, if circumstantial, evidence of the universal proper-
ties of the PYTHIA modeling.

Additional important quantities to consider for further validation (and eventually tuning, e.g., in the
Professor framework), would be observables involving explicit jet reconstruction and explicit underlying-
event observables in leading-jet, dijet, jet + photon, and Drell-Yan events. Some of these have already
been included in the Professor framework, see [1, 18]. See also the underlying-event sections in the
HERA-and-the-LHC [33], Tevatron-for-LHC [32], and Les Houches write-ups [34].

2 Main Features of the Perugia Tunes

In comparison with tunes of the old (PYTHIA 6.2) framework [35], such as Tune A [29–32], all tunes
of the new framework share a few common features. Let us first describe those, with plots to illustrate
each point, and then turn to the properties of the individualtunes.

First of all, the newp⊥-ordered showers [11] employ a dipole-style recoil model, which appears to
make it very easy to obtain a good agreement with, e.g., the Drell-Yan p⊥ spectrum. In the old model
with default settings, the Drell-Yan spectrum is only well described if FSR off ISR jets is switched off.
When switching this back on, which is of course necessary to obtain the desired perturbative broadening
of the ISR jets, the old shower kinematics work in such a way that each FSR emission off a final-state
parton from ISR effectively removesp⊥ from theZ boson, shifting the spectrum towards lower values.
This causes any tune of the old PYTHIA framework with default ISR settings — such as Tune A or the

1Note: when extrapolating to other energies, the alternative scaling represented by “S0A” appears to be preferred over the
default scaling used in “S0”.
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Figure 1: Comparisons to the CDF Run I measurement of thep⊥ of Drell-Yan pairs [19]. Left: a
representative selection of models.Center: different tunes of the new framework.Right: the range
spanned by the main Perugia variations. Comparisons to the DØ Run II measurement [20] and results
with more tunes can be found at [17]. Note that the Monte Carlocurves shown are for thep⊥ of the
original boson rather than of the lepton pair after (QED) showering.

ATLAS DC2/“Rome” tune — to predict a too narrow spectrum for the Drell-Yanp⊥ distribution, as
illustrated in fig. 1.

To re-establish agreement with the measured spectrum without changing the recoil kinematics, the
total amount of ISR in the old model had to be increased. This was done by choosing extremely low
values of the renormalisation scale (and hence largeαs values) for ISR (tunes DW-Pro and Pro-Q20 in
fig. 1). While this nominally works, the whole business does smell faintly of fixing one problem by
introducing another and hence the default in PYTHIA has remained the unmodified Tune A, at the price
of retaining the poor agreement with the Drell-Yan spectrum.

In the newp⊥-ordered showers [11], however, FSR off ISR is treated within individual QCD dipoles
and does not affect the Drell-Yanp⊥. This appears to make the spectrum come out generically much
closer to the data. The only change from the standardαs(p⊥) choice used in the S0 family of tunes was
thus switching to the so-called CMW choice [36] forΛQCD for ISR in the Perugia tunes, rather than the
MS value used previously, similarly to what is done in HERWIG [37, 38]. The effect of this relatively
small change can be seen by comparing S0(A), which uses theMS value, to Perugia 0 in the middle
plot on fig. 1. The extremal curves on the right plot are obtained by usingαCMW

s (1
2
p⊥) (HARD) and

αMS
s (

√
2p⊥) (SOFT).

Secondly, as mentioned above, we here include data from different colliders at different energies,
in an attempt to fix the energy scaling better. Like Rick Field, we find that the default energy scaling
behaviour in PYTHIA results in the overall activity growing too fast with collider energy. This can be
mitigated by increasing the dependence of the MPI infrared cutoff on collider energy. For Tune A, Rick
Field increased the power of this dependence from∝ E0.16

cm (the default, see [13]) to∝ E0.25
cm . The

Perugia tunes incorporate a large range of values, between0.22 and0.32, with Perugia 0 using0.26,
i.e., very close to the Tune A value. Note that the default wasoriginally motivated by the scaling of
the total cross section, which grows like∝ (E2

cm)
0.08. It therefore seems that at least in the current
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Figure 2: Comparisons to the CDF measurements of the chargedtrack multiplicity in minimum-bias
pp̄ collisions at 630 GeV (top row) and at 1800 GeV (bottom row).Left: a representative selection of
models.Center:different tunes of the new framework.Right: the range spanned by the main Perugia
variations. Results with more tunes can be found at [17].

models, the colour screening / infrared cutoff of the individual multi-parton interactions needs to scale
significantly faster than the total cross section. A discussion of whether this tendency could be given a
meaningful physical interpretation (e.g., in terms of low-x, saturation, or unitarisation effects) is beyond
the scope of this contribution.

As evident from fig. 2, the Perugia tunes all describe the Tevatron Nch distributions at 630 (top)
and 1800 (bottom) GeV within an acceptable margin. Note thatthe charged track definition is here
p⊥ > 0.4 GeV, |η| < 1.0, and particles withcτ ≥ 10mm treated as stable. To highlight the difference in
the scaling, the middle plot shows both Tune S0 and Tune S0A at630 GeV. These are identical at 1800
GeV and only differ by the energy scaling, with S0 using the default scaling mentioned above and S0A
using the Tune A value. It is mainly the comparative failure of S0 with the default scaling to describe the
630 GeV data on the top middle plot in fig. 2 that drives the choice of a slower-than-default pace of the
energy scaling of the activity (equivalent to a higher scaling power of the infrared cutoff, as discussed
above).

A similar comparison to UA5 data at two different energies, but now in a slightly largerη region and
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Figure 3: Comparisons to the UA5 measurements of the chargedtrack multiplicity in minimum-bias
pp̄ collisions at 200 GeV (top row) and at 900 GeV (bottom row).Left: a representative selection of
models.Center:different tunes of the new framework.Right: the range spanned by the main Perugia
variations. More results can be found at [17].

including allp⊥ is shown in fig. 3. Since the data here includes allp⊥, the theoretical models have been
allowed to deviate slightly more from the data than for the Tevatron and the first few bins were ignored,
to partly reflect uncertainties associated with the production of very soft particles.

The good news, from the point of view of LHC physics, is that even the most extreme Perugia
variants need to have a more slowly growing activity than thedefault. Thus, their extrapolations to the
LHC produceless underlying event than those of their predecessors that usedthe default scaling, such
as S0, DWT, or ATLAS-DC2/Rome.

Thirdly, while the charged particlep⊥ spectrum (see [17, dN/dpT]) andNch distribution in Tune
A was in almost perfect agreement with Tevatron min-bias data, the high-multiplicity behaviour of the
〈Nch〉 (p⊥) distribution was slightly too high [23]. This slight discrepancy carried over to the S0 family
of tunes of the new framework, since these were tuned to Tune A, in the absence of published data.
Fortunately, CDF data has now been made publicly available [23], and hence it was possible to take
the actual data into consideration for the Perugia tunes, resulting in somewhat softer particle spectra in
high-multiplicity events, cf. fig. 4. Note that this distribution is highly sensitive to the colour structure
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Figure 4: Comparisons to the CDF Run II measurement of the average trackp⊥ as a function of track
multiplicity in min-biaspp̄ collisions. Left: a representative selection of models.Center: the impact
of varying models of color (re-)connections on this distribution. Right: the range spanned by the main
Perugia variations. The SOFT and HARD variations were here allowed to deviate by significantly
more than the statistical precision due to the high sensitivity of the distribution and the large theoretical
uncertainties. Results with more tunes can be found at [17].

of the events, as emphasized in [27,28,35,39].

Finally, the old framework did not include showering off theMPI in- and out-states2. The new
framework does include such showers, which furnishes an additional fluctuating physics component.
Relatively speaking, the new framework therefore needsless fluctuations from other sources in order to
describe the same data. This is reflected in the tunes of the new framework generally having a less lumpy
proton (smoother proton transverse density distributions) and fewer total numbers of MPI than the old
one. We included illustrations of this in a special “theory”section of the web plots, cf. [17, Theory
Plots] and [16, Fig. 4].

The showers off the MPI also lead to a greater degree of decorrelation andp⊥ imbalance between the
minijets produced by the underlying event, in contrast to the old framework where these remained almost
exactly balanced and back-to-back. This should show up in minijet ∆φjj and/or∆Rjj distributions
sensitive to the underlying event, such as inZ/W+jets with lowp⊥ cuts on the additional jets.

Further, since showers tend to produce shorter-range correlations than MPI, the new tunes also
exhibit smaller long-range correlations than the old models. I.e., if there is a large fluctuation in one
end of the detector, it isless likely in the new models that there is a large fluctuation in the same
direction in the other end of the detector. The impact of this, if any, on the overall modeling and
correction procedures derived from it, has not yet been studied. At the very least it furnishes a systematic
difference between the models. For brevity, we do not include the plots here but refer to the web [17, FB
Correlation] and to the original PYTHIA MPI paper for a definition and comparable plots [35].

2It did, of course, include showers off the primary interaction. S. Mrenna has since implemented FSR off the MPI as an
additional option in that framework, but tunes using that option have not yet been made.
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3 Tune-by-Tune Descriptions

The starting point for all the Perugia tunes, apart from Perugia NOCR, was S0(A)-Pro, i.e., the original
tunes S0 and S0A, revamped to include the Professor tuning offlavour and fragmentation parameters
to LEP data [1]. The starting point for Perugia NOCR was NOCR-Pro. From these starting points,
the main hadron collider parameters were retuned to better describe the above mentioned data sets. An
overview of the tuned parameters and their values is given intable 1.

Perugia 0 (320): UsesΛCMW instead ofΛ
MS

, which results in near-perfect agreement with the Drell-
Yan p⊥ spectrum, both in the tail and in the peak, cf. fig. 1, middle plot. Also has slightly less colour
reconnections, especially among high-p⊥ string pieces, which improves the agreement both with the
〈p⊥〉 (Nch) distribution and with the high-p⊥ tail of charged particlep⊥ spectra, cf [17, dN/dpT (tail)]).
Compared to S0A-Pro, this tune also has slightly more beam-remnant breakup (more baryon number
transport), mostly in order to explore this possibility than due to any necessity of tuning. Without further
changes, these modifications would lead to a greatly increased average multiplicity as well as larger
multiplicity fluctuations. To keep the total multiplicity unchanged, cf. the solid grey curves labeled
“Perugia 0” on the plots in the top row of fig. 2, the changes above were accompanied by an increase in
the MPI infrared cutoff, which decreases the overall MPI-associated activity, and by a slightly smoother
proton mass profile, which decreases the fluctuations. Finally, the energy scaling is closer to that of S0A
than to the default one used for S0, cf. the middle panes in figs. 2 and 3.

Perugia HARD (321): Variant of Perugia 0 which has a higher amount of activity from pertur-
bative physics and counter-balances that partly by having less particle production from nonperturba-
tive sources. Thus, theΛCMW value is used for ISR, together with a renormalisation scalefor ISR
of µR = 1

2
p⊥, yielding a comparatively hard Drell-Yanp⊥ spectrum, cf. the dashed curve labeled

“HARD” in the right pane of fig. 1. It also has a slightly largerphase space for both ISR and FSR, uses
higher-than-nominal values for FSR, and has a slightly harder hadronisation. To partly counter-balance
these choices, it has less “primordialkT ”, a higher infrared cutoff for the MPI, and more active color
reconnections, yielding a comparatively high curve for〈p⊥〉 (Nch), cf. fig. 4.

Perugia SOFT (322): Variant of Perugia 0 which has a lower amount of activity fromperturbative
physics and makes up for it partly by adding more particle production from nonperturbative sources.
Thus, theΛ

MS
value is used for ISR, together with a renormalisation scaleof µR =

√
2p⊥, yielding

a comparatively soft Drell-Yanp⊥ spectrum, cf. the dotted curve labeled “SOFT” in the right pane of
fig. 1. It also has a slightly smaller phase space for both ISR and FSR, uses lower-than-nominal values
for FSR, and has a slightly softer hadronisation. To partly counter-balance these choices, it has a more
sharply peaked proton mass distribution, a more active beamremnant fragmentation (lots of baryon
transport), a slightly lower infrared cutoff for the MPI, and slightly less active color reconnections,
yielding a comparatively low curve for〈p⊥〉 (Nch), cf. fig. 4.

Perugia 3 (323): Variant of Perugia 0 which has a different balance between MPI and ISR and a
different energy scaling. Instead of a smooth dampening of ISR all the way to zerop⊥, this tune uses
a sharp cutoff at 1.25 GeV, which produces a slightly harder ISR spectrum. The additional ISR activity
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Parameter Type S0A-Pro P-0 P-HARD P-SOFT P-3 P-NOCR P-X P-6

MSTP(51) PDF 7 7 7 7 7 7 20650 10042
MSTP(52) PDF 1 1 1 1 1 1 2 2

MSTP(64) ISR 2 3 3 2 3 3 3 3
PARP(64) ISR 1.0 1.0 0.25 2.0 1.0 1.0 2.0 1.0
MSTP(67) ISR 2 2 2 2 2 2 2 2
PARP(67) ISR 4.0 1.0 4.0 0.5 1.0 1.0 1.0 1.0
MSTP(70) ISR 2 2 0 1 0 2 2 2
PARP(62) ISR - - 1.25 - 1.25 - - -
PARP(81) ISR - - - 1.5 - - - -
MSTP(72) ISR 0 1 1 0 2 1 1 1

PARP(71) FSR 4.0 2.0 4.0 1.0 2.0 2.0 2.0 2.0
PARJ(81) FSR 0.257 0.257 0.3 0.2 0.257 0.257 0.257 0.257
PARJ(82) FSR 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8

MSTP(81) UE 21 21 21 21 21 21 21 21
PARP(82) UE 1.85 2.0 2.3 1.9 2.2 1.95 2.2 1.95
PARP(89) UE 1800 1800 1800 1800 1800 1800 1800 1800
PARP(90) UE 0.25 0.26 0.30 0.24 0.32 0.24 0.23 0.22
MSTP(82) UE 5 5 5 5 5 5 5 5
PARP(83) UE 1.6 1.7 1.7 1.5 1.7 1.8 1.7 1.7

MSTP(88) BR 0 0 0 0 0 0 0 0
PARP(79) BR 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0
PARP(80) BR 0.01 0.05 0.01 0.05 0.03 0.01 0.05 0.05
MSTP(91) BR 1 1 1 1 1 1 1 1
PARP(91) BR 2.0 2.0 1.0 2.0 1.5 2.0 2.0 2.0
PARP(93) BR 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0

MSTP(95) CR 6 6 6 6 6 6 6 6
PARP(78) CR 0.2 0.33 0.37 0.15 0.35 0.0 0.33 0.33
PARP(77) CR 0.0 0.9 0.4 0.5 0.6 0.0 0.9 0.9

MSTJ(11) HAD 5 5 5 5 5 5 5 5
PARJ(21) HAD 0.313 0.313 0.34 0.28 0.313 0.313 0.313 0.313
PARJ(41) HAD 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49
PARJ(42) HAD 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2
PARJ(46) HAD 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
PARJ(47) HAD 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

Table 1: Parameters of the Perugia tunes, omitting the LEP flavour parameters tuned by Professor [1]
(common to all the “Pro” and “Perugia” tunes). The starting point, S0A-Pro, is shown for reference.
(BR stands for Beam Remnants and CR stands for Colour Reconnections.)
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is counter-balanced by a higher infrared MPI cutoff. Since the ISR cutoff is independent of the collider
CM energy in this tune, the multiplicity would nominally evolve very rapidly with energy. To offset
this, the MPI cutoff itself must scale very quickly, hence this tune has a very large value of the scaling
power of that cutoff. This leads to an interesting systematic difference in the scaling behaviour, with
ISR becoming an increasingly more important source of particle production as the energy increases in
this tune, relative to Perugia 0.

Perugia NOCR (324): An update of NOCR-Pro that attempts to fit the data sets as wellas possible,
without invoking any explicit colour reconnections. Can reach an acceptable agreement with most
distributions, except for the〈p⊥〉 (Nch) one, cf. fig. 4.

Perugia X (325): A Variant of Perugia 0 which uses the MRST LO* PDF set [40]. Dueto the
increased gluon densities, a slightly lower ISR renormalisation scale and a higher MPI cutoff than for
Perugia 0 is used. Note that, since we are not yet sure the implications of using LO* for the MPI
interactions have been fully understood, this tune should be considered experimental for the time being.
See [17, Perugia PDFs] for distributions.

Perugia 6 (326): A Variant of Perugia 0 which uses the CTEQ6L1 PDF set [41]. Identical to Perugia
0 in all other respects, except for a slightly lower MPI infrared cutoff at the Tevatron and a lower scaling
power of the MPI infrared cutoff. See [17, Perugia PDFs] for distributions.

4 Extrapolation to the LHC

Part of the motivation for updating the S0 family of tunes wasspecifically to improve the constraints
on the energy scaling to come up with tunes that extrapolate more reliably to the LHC. This is not to
say that the uncertainty is still not large, but as mentionedabove, it does seem that, e.g., the default
PYTHIA scaling has by now been convincingly ruled out, and so this isnaturally reflected in the updated
parameters.

Fig. 5 contains predictions for the Drell-Yanp⊥ distribution (using the CDF cuts), the charged
track multiplicity distribution in minimum-bias collisions, and the average trackp⊥ as a function of
multiplicity at 14 TeV, for the central, hard, soft, and “3” variations of the Perugia tunes. We hope
this helps to give a feeling for the kind of ranges spanned by the Perugia tunes (the PDF variations
give almost identical results to Perugia 0 for these distributions). A full set of plots illustrating the
extrapolations to the LHC for both the central region|η| < 2.5 as well as the region1.8 < η < 4.9
covered by LHCb can be found on the web [17].

However, in addition to these plots, we thought it would be interesting to make at least one set
of numerical predictions for an infrared sensitive quantity that could be tested with the very earliest
LHC data. We therefore used the Perugia tunes and their variations to get an estimate for the mean
multiplicity of charged tracks in (inelastic, nondiffractive) minimum-biaspp collisions at 10 and 14
TeV. The Perugia variations indicate an uncertainty of order 15% or less on the central values, which
is probably an underestimate, due to the limited nature of the models. Nonetheless, having spent a
significant amount of effort in making these estimates, given in tab. 2, we intend to stick by them until
proved wrong. The acknowledgments therefore contain a recognition of a bet to that effect.
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Figure 5: Perugia “predictions” for thep⊥ of Drell-Yan pairs (left), the charged track multiplicity in
min-bias (center), and the average trackp⊥ in min-bias (right) at the LHC. See [17] for additional plots.

5 Conclusions

We have presented a set of updated parameter sets (tunes) forthe interleavedp⊥-ordered shower and
underlying-event model in PYTHIA 6.4. These parameter sets include the revisions to the fragmentation
and flavour parameters obtained by the Professor group and reported on elsewhere in these proceedings
[1]. The new sets further include more Tevatron data and moredata from different collider CM energies
in an attempt to simultaneously improve the overall description at the Tevatron data while also improving
the reliability of the extrapolations to the LHC. We have also attempted to deliver a first set of “tunes
with uncertainty bands”, by including alternative tunes with systematically different parameter choices.
The new tunes are available from Pythia version 6.4.20, via the routine PYTUNE.

We note that these tunes still only included Drell-Yan and minimum-bias data directly; leading-jet,
photon+jet, and underlying-event data was not considered explicitly. This is not expected to be a major
problem due to the good universality properties that the PYTHIA modeling has so far exhibited, but it
does mean that the performance of the tunes on such data sets should be tested, which will hopefully
happen in the near future.

We hope these tunes will be useful to the RHIC, Tevatron, and LHC communities.
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Predictions for Mean Densities of Charged Tracks

〈Nch〉 |Nch≥0

∆η∆φ

〈Nch〉 |Nch≥1

∆η∆φ

〈Nch〉 |Nch≥2

∆η∆φ

〈Nch〉 |Nch≥3

∆η∆φ

〈Nch〉 |Nch≥4

∆η∆φ

LHC 10 TeV 0.40 ± 0.05 0.41 ± 0.05 0.43 ± 0.05 0.46 ± 0.06 0.50 ± 0.06

LHC 14 TeV 0.44 ± 0.05 0.45 ± 0.06 0.47 ± 0.06 0.51 ± 0.06 0.54 ± 0.07

Table 2: Best-guess predictions for the mean density of charged tracks for min-biaspp collisions at two
LHC energies. These numbers should be compared to data corrected to 100% track finding efficiency for
tracks with|η| < 2.5 andp⊥ > 0.5 GeV and 0% efficiency outside that region. The definition of a stable
particle was set atcτ ≥ 10mm (e.g., the two tracks from aΛ0 → p+π− decay were not counted). The
± values represent the estimated uncertainty, based on the Perugia tunes. Since the lowest multiplicity
bins may receive large corrections from elastic/diffractive events, it is possible that it will be easier to
compare the (inelastic nondiffractive) theory to the first data with one or more of the lowest multiplicity
bins excluded, hence we have here recomputed the means with up to the first 4 bins excluded. (These
predictions were first shown at the 2009 Aspen Winter Conference.)
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[14] T. Sjöstrand, S. Mrenna, and P. Skands, Comput. Phys. Commun.178, 852 (2008), 0710.3820.

12



[15] Y. I. Azimov, Y. L. Dokshitzer, V. A. Khoze, and S. I. Troyan, Z. Phys.C27, 65 (1985).

[16] P. Z. Skands, in C. Buttar et al., arXiv:0803.0678 [hep-ph].

[17] P. Skands, Peter’s pythia plots, see
http://home.fnal.gov/∼skands/leshouches-plots/.

[18] A. Buckley, H. Hoeth, H. Schulz, and J. E. von Seggern, (2009), arXiv:0902.4403 [hep-ph].

[19] CDF, A. A. Affolder et al., Phys. Rev. Lett.84, 845 (2000), hep-ex/0001021.

[20] D0, V. M. Abazovet al., Phys. Rev. Lett.100, 102002 (2008), 0712.0803.

[21] CDF, D. E. Acostaet al., Phys. Rev.D65, 072005 (2002).

[22] CDF, F. Abeet al., Phys. Rev. Lett.61, 1819 (1988).

[23] N. Moggi, Inclusive pp differential cross-sections, see
http://www-cdf.fnal.gov/physics/new/qcd/abstracts/min bias08/publicpage.html,
2008.

[24] T. Alexopouloset al., Phys. Lett.B435, 453 (1998).

[25] UA5, G. J. Alneret al., Phys. Rept.154, 247 (1987).

[26] UA5, R. E. Ansorgeet al., Z. Phys.C43, 357 (1989).

[27] M. Sandhoff and P. Skands, presented at Les Houches Workshop on Physics at TeV Colliders, Les
Houches, France, 2-20 May 2005, in hep-ph/0604120.

[28] P. Skands and D. Wicke, Eur. Phys. J.C52, 133 (2007), hep-ph/0703081.

[29] R. D. Field, hep-ph/0201192 CDF Note 6403; further recent talks available from webpage
http://www.phys.ufl.edu/∼rfield/cdf/.

[30] R. Field and R. C. Group, (2005), hep-ph/0510198.

[31] CDF, R. Field, AIP Conf. Proc.828, 163 (2006).

[32] TeV4LHC QCD Working Group, M. G. Albrowet al., (2006), hep-ph/0610012.

[33] S. Alekhinet al., (2005), hep-ph/0601012.

[34] C. Buttaret al., (2008), 0803.0678.
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